博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
poj 1836 -- Alignment
阅读量:7064 次
发布时间:2019-06-28

本文共 3034 字,大约阅读时间需要 10 分钟。

Alignment
 
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 13243   Accepted: 4261

Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned; it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , . . . , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line's extremity (left or right). A soldier see an extremity if there isn't any soldiers with a higher or equal height than his height between him and that extremity. 
Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line. 

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from this line represents the height of the soldier who has the code k (1 <= k <= n). 
There are some restrictions: 
• 2 <= n <= 1000 
• the height are floating numbers from the interval [0.5, 2.5] 

Output

The only line of output will contain the number of the soldiers who have to get out of the line.

Sample Input

81.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

思路:双向LIS,分别首尾求最长非递减序列。然后O(n^2)枚举。
1 /*====================================================================== 2  *           Author :   kevin 3  *         Filename :   Alignment.cpp 4  *       Creat time :   2014-09-15 10:37 5  *      Description : 6 ========================================================================*/ 7 #include 
8 #include
9 #include
10 #include
11 #include
12 #include
13 #define clr(a,b) memset(a,b,sizeof(a))14 #define M 100515 using namespace std;16 double height[M];17 int dp1[M],dp2[M];18 int main(int argc,char *argv[])19 {20 int n;21 while(scanf("%d",&n)!=EOF){22 clr(height,0);23 for(int i = 0; i < n; i++){24 scanf("%lf",&height[i]);25 }26 clr(dp1,0);27 clr(dp2,0);28 dp1[0] = 1;29 dp2[n-1] = 1;30 for(int i = 1; i < n; i++){31 dp1[i] = 1;32 for(int j = 0; j < i; j++){33 if(height[j] < height[i] && dp1[j]+1 > dp1[i]){34 dp1[i] = dp1[j] + 1;35 }36 }37 }38 for(int i = n-2; i >= 0; i--){39 dp2[i] = 1;40 for(int j = n-1; j > i; j--){41 if(height[j] < height[i] && dp2[j]+1 > dp2[i]){42 dp2[i] = dp2[j] + 1;43 }44 }45 }46 int ans = 0;47 for(int i = 0; i < n-1; i++){48 ans = max(dp1[i]+1,ans);49 for(int j = i+1; j < n; j++){50 ans = max(ans,dp1[i]+dp2[j]);51 }52 }53 printf("%d\n",n-ans);54 }55 return 0;56 }
View Code

 

转载于:https://www.cnblogs.com/ubuntu-kevin/p/3975295.html

你可能感兴趣的文章
System.gc
查看>>
最小二乘法多项式曲线拟合原理与实现(转)
查看>>
Java NIO 系列教程(转)
查看>>
socketio
查看>>
Oracle的常见错误及解决办法
查看>>
一花一世界(转)
查看>>
winform 控件部分
查看>>
BZOJ1066 蜥蜴
查看>>
(三)控制浏览器操作
查看>>
进程控制编程
查看>>
Postgresql 数据库,如何进行数据备份以及导入到另外的数据库
查看>>
python之闭包、装饰器
查看>>
实现单例模式的9个方法
查看>>
Java的接口总结
查看>>
C++复习
查看>>
cpsr与cpsr_c的区别
查看>>
星星评分
查看>>
Django - - Django REST framework基础:分页
查看>>
no module name cx_oracle 的解决方法
查看>>
poj - 2240 Arbitrage
查看>>